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Tangent Dirac structures 
Ted Courant 
Department of Mathematics, University of California, Santa Cruz, CA 95064, USA 

Received 18 December 1989 

Abstract. The lift of a closed 2-form 0 on a manifold Q to a closed 2-form on TQ may 
be achieved by pulling back the canonical symplectic structure on T*Q by the bundle map 
n: TQ + T*Q. It is also known how to lift a Poisson structure on Q to a Poisson structure 
on TQ. We call these lifted structures ‘tangent’ structures. The notion of a Dirac structure 
is reviewed. This is a hybrid of Poisson and pre-symplectic structures, which mdy be thought 
of as a (singular) foliation of Q by pre-symplectic leaves. The main result of this paper is 
a single method which achieves the lift to TQ of either a Poisson or a pre-symplectic 
structure on Q. Natural involution on 7TQ is shown to preserve the lift to 7TQ of the 
lifted structure on TQ. The method is then applied to Dirac structures, with the result that 
a Dirac structure on Q has a tangent lift to TQ generalizing the lifts of Poisson and 
pre-symplectic structures. 

1. Introduction 

The underlying structure in the study of Hamiltonian systems on a manifold Q is a 
Poisson algebra on some subalgebra of C“(Q),  i.e. a Lie algebra bracket { , } with an  
additional condition, called the Leibniz rule: 

Thus a function f in the Poisson algebra gives rise to adf = { f ,  } which is a derivation 
on the Poisson algebra, and  hence may be thought of as defining a vector field on Q. 

Two natural ways for Poisson algebras to arise are through Poisson or pre-symplectic 
structures on  Q. These structures are 2-tensors satisfying certain integrability conditions 
(see Weinstein 1983, or Abraham and Marsden 1978). A Poisson structure is defined 
as a bundle map B : T*Q + TQ for which the Schouten bracket [ B, B ]  of the correspond- 
ing covariant 2-tensor with itself vanishes. The image of B is an  integrable singular 
distribution, giving a foliation of Q whose leaves are symplectic (see Weinstein 1983). 
The Poisson algebra arises as follows: for any func t ionfe  C“( Q )  we define B df= ad, 
so that { f ,  g} = ( B /  dfA dg). With this notation the Schouten bracket [ B ,  B ]  is deter- 
mined by 

so that [B,  B ]  = 0 if and  only if { , } is a lie bracket; the Leibniz rule holds automatically 
since B takes values in TQ. 

A pre-symplectic structure on Q is a skew-symmetric bundle map R : TQ + T*Q. 
The integrability condition is that the exterior derivative dR vanishes. In this case the 
vector fields adf are defined as follows: if X iR = df for some function J.  we write 
X = X, = adf. Then { A  g} = R(Xg,  X, ) ;  note that X, is only defined u p  to a vector field 
in ker R,  i.e. a gauge field on Q (see Hanson et a1 1976). However, { f ,  g} is well defined 
on the subset of C“( Q )  which is constant along ker R. The condition 

shows that d R =  0 if and  only if { , } is a lie bracket. 

{fg, h }  = f i g ,  h l +  { f ,  hlg. 

t ( [ 4  Bll d”fAdgAdh)={J{g, h}}+{g,{h,fl l+{h,{f,  g } }  

dfln(xf,xg,xh)={f,{b? h l l+{g ,  Ih,f})+{h,{f,g}l 
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5154 T Courant 

A natural extension of these two examples is the Dirac structure (Courant 1989), 
a sort of hybrid structure which may be thought of as a foliation of Q whose leaves 
are pre-symplectic. Dirac structures are defined as subbundles LC TQO T*Q, which 
are maximally isotropic under the natural pairing ( , )+ on TQO T*Q given by ( ( X ,  U ) ,  

Y, F ) ) ~  = w (  Y )  + p ( X ) ;  this is a natural generalization of a skew-symmetric bundle 
map between TQ and T*Q. The integrability condition for Dirac structures is given 
by the vanishing of a certain 3-tensor on the vector bundle L. If L is the graph of a 
bundle map, we recover the Poisson or the pre-symplectic case (see Courant and 
Weinstein 1988, Courant 1989). These hybrid structures are named for Dirac because 
they form the natural setting for applying Dirac’s theory of constraints, a method for 
passing Poisson brackets to submanifolds (see Gotay er a1 1978, Sniatycki 1974, 
Dirac 1964). 

The infinite-dimensional case of Dirac structures has been applied to the study 
of local Hamiltonian and local symplectic operators, with applications to the theory 
of Hamiltonian pairs and complete integrability, see Dorfman (1987). 

Given a symplectic structure on a manifold Q, there is a natural way to ‘lift’ the 
structure to a symplectic structure on the bundle TQ. The symplectic structure on Q 
may be viewed as a bundle map TQ+ T*Q, and thus it may be used to pull back the 
canonical symplectic structure 0, on T*Q; the result is a closed non-degenerate 
2-form on TQ, i.e. a symplectic structure. 

A similar situation exists in the Poisson case: a Poisson structure on a manifold Q 
has a naturally induced lift to a Poisson structure on TQ. This tangent lift has many 
properties, among them: it is natural with respect to tangents of Poisson maps (so that 
the tangent of a Poisson map Q + P is again a Poisson map TQ + T P ) ,  a submanifold 
L of Q is Lagrangian if and only if TL is Lagrangian in TQ, and a vector field X on 
Q is Hamiltonian if and only if its graph T(X) c TQ is Lagrangian. The tangent Poisson 
structure has applications in control theory; see Alvarez-Sanchez (1986). 

In this paper a method is given which works for establishing the lift to TQ of either 
a Poisson structure or a pre-symplectic structure on Q. This involves applying the 
natural involution to the bundle V Q ,  and using a certain diffeomorphism 7 T * Q +  
T*TQ (see Tulczyjew 1977). As a corollary, we obtain the result that in both the 
Poisson and pre-symplectic cases the natural involution map V Q  + 7TQ preserves 
the tangent lift to VQ of the tangent structure on TQ. Our method is then applied to 
obtain the lift of a Dirac structure from Q to TQ. This construction generalizes the 
lifting of Poisson and pre-symplectic structures. 

2. Poisson structures 

A Poisson structure on a manifold Q is defined as a skew-symmetric bundle map 
T :  T*Q + TQ, determined by a bivector field, so that T = T ” ( a / a q ’ )  A ( a / d q ’ ) ,  with the 
additional condition that the Schouten bracket of T with itself vanishes, i.e. [ T ,  T ]  = 0. 

A Poisson algebra on Q is a bracket { , } on a subset of C“( Q )  such that {f, gh} = 
g{f, h } + { f ,  g } h  and { , } is a Lie algebra bracket. From these definitions we have the 
following theorem. 

Theorem. A Poisson structure on Q determines a Poisson algebra on C“( Q) given by 

(TldfA dg) = if, g } .  
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Example. A symplectic structure on Q is a non-degenerate closed 2-form R on Q, 
which we may consider as an  invertible skew symmetric bundle map R : 7 Q  + T * Q .  
Thus its inverse is a skew symmetric bundle map R-l : T*Q+ TQ which we may 
interpret as a bivector-field rQ. Then the relation ( X f  A X, A X,ldSZ) = 
([ra,  .rrQ]ldf A d g  A dh)  (see Tulczyjew 1974) shows that this inverse bundle map is 
indeed a Poisson structure on Q. 

Example (Lie-Poisson structure). Let g be any Lie algebra. A Poisson algebra on C"(g*)  
may be defined as follows: let f ,  g e  C"(g*) ;  then the FrechCt derivatives o f f  and  g 
at p are maps Df (F) ,  D g ( p ) :  Tpg*+R, or  maps D f ( p ) ,  D g ( p ) : g * + R ;  since these 
maps are linear functionals on g*, we may identify them with elements Sf/8p, Gg/Sp E 

g. Set 

This defines a Poisson structure on g*; it follows that the Hamiltonian vector fields 
are given by Xf(p) = {f; } ( p )  = adZfl8,p. If we let x ' ,  x 2 , .  . . , x n  be a linear basis for 
g, we see that {XI, x'} = .rr,"xk are the components of the Poisson bivector field for this 
Poisson structure, where the T," are the structure constants of the Lie algebra g. 

Taking this one step further, we consider another example. 

Example. Consider the semi-direct product Lie algebra g & g  of g with itself, whose 
bracket is given by [ ( p ,  v), ( p ,  C)] = ( [ p ,  p ] ,  [p ,  4 -[& VI). Then the Lie-Poisson 
bracket is given by 

As above, we choose a basis ( p ' .  v') of g& g;  then the Lie-Poisson structure is given 
by: 

{ V I ,  v'} = 0 { p ' ,  v'} = 7r;vk {PI ,  w ' }  = 7T;pk. 

(Note that we may write this as { p ' ,  v'} = (a {+ ' ,  p J } / d p k ) v k ;  we shall see this again 
later.) 

3. Tangent symplectic and pre-symplectic structures 

Consider a pre-symplectic structure on Q given by a skew symmetric bundle map 
R : TQ + T*Q. We may use R to pull back to TQ the canonical symplectic structure 
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n, to T*Q. We now carry this out in local coordinates; let (q ' ,  p,) be local coordinates 
on T*Q, and (q ' ,  4 ' )  local coordinates on TQ induced by a local chart (9 ' )  on Q. The 
pre-symplectic structure is given locally by p, = n,q', where R,, = ( R \ ( d / d q ' )  A (J /Jq' ) ) .  
Then the pullback R*(R,) is given by 

dp, A dq '  = d(R,q') A dq'  

= R , , q '  dqk A dq'  + R ,  dq' A dq'  

= 1 (Rl,,k -Rk,,t)cj' d q k  A d q ' + o ,  dq' A dq '  

= n,,,q' dq' A dq '+R, ,  dq '  A dq '  

= Rl,,hqk dq' A dq'+R, ,  dq '  A dq' 

' < I  

where we have used d n =  0 in the form + a k , . ,  +alk,, = 0. Thus we get a pre- 
symplectic structure on TQ inherited from the structure R on Q. We call this the 
tangent lift to TQ of the 2-form on Q. 

3.1. Natural involution 

Recall that on the double tangent bundle of a manifold there is a map, the so-called 
natural involution, - : V Q  + 7TQ. Let ( 9 ' )  be a coordinate chart on Q, and let (q ' ,  4 ' )  
be the induced coordinate chart on TQ; finally, about points (q ' ,  q ' )  and ( q ' ,  S q ' )  of 
TQ, let the induced charts on 7TQ be denoted by ( q ' ,  q', Sq ' ,  S q ' )  and (q ' ,  Sq', q', S q ' ) ,  
respectively (i.e. one applies dots or deltas to the first pair of coordinate functions). 
Then locally, natural involution is given by - ( q ' ,  q', Sq ' ,  S q ' )  = (q ' ,  Sq', q ' ,  S q ' ) .  Notice 
that -' = 1 rrQ. Although I have given only a local representation, - is in fact a global 
map. See Tulczyjew (1977), or Abraham and Marsden (1978). Also note that it is not 
a bundle map. 

3.2. Canonical involution 

Now consider the manifolds V*Q and T* TQ, endowed with the tangent symplectic 
structure and the canonical symplectic structure, respectively. Let (9') be a chart on 
Q and let ( q ' ,  p, ,  cj ' ,  @,) and (q ' ,  q', p , ,  0,) be the induced symplectic charts on 7T*Q 
and T* TQ, respectively, so that the symplectic structures are given by dq '  A dp, + dq'  A 

dp, and dq '  A dq '  + dp, A dpI, respectively. Canonical involution is the globally defined 
map a : T* TQ -+ TT*Q that intertwines the given symplectic structures on these two 
manifolds; note that it is not really an involution, since a' is not defined. In local 
coordinates a is given by 

a ( q ' ,  q ' , P r , @ y ) = ( q ' , P r , p r >  4'). 
Then clearly a*(dq '  A dpr + dq '  A dp,) = dq '  A dq'  + dp, A dp,. For a detailed discussion 
of the map a, see Tulczyjew (1977). 

4. Tangent Poisson structures 

Consider for the moment the bundle map R : TQ -+ T*Q o f  a symplectic structure on 
Q. We may take the tangent map TR : 7'TQ -+ 7T*Q and apply the natural and canonical 
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involution operators to get the following commutative diagram: 

TTQ- T T * Q  

-I I- 
m Q  - T*TQ. 

Indeed a local calculation shows that the bottom map is exactly the 2-form fl*(CIQ) 
on TQ that was previously computed. 

Consider now the Poisson structure determined by a bundle map B : T*Q + TQ. 
Again we will take the tangent map TB : 7 T * Q  + 7TQ and apply the canonical and 
natural involutions, resulting in the following diagram: 

m * Q -  T T Q  

I- 
T* TQ - TTQ. 

Again a local calculation shows that the bottom map is a bundle map. In fact, it 
again defines a Poisson structure, this time on the manifold TQ. 

Theorem. Let ( q ' ,  4 ' )  be a local chart on TQ induced by ( 4 ' )  on Q, and let { q', 4 ' )  = T O  
be the Poisson brackets for B on Q. Then the bottom map of the diagram above 
determines a Poisson structure on TQ given locally by 

This is the Poisson structure first used by Alvarez-Sanchez in applications to control 
theory; see Alvarez-Sanchez (1986). 

Proof: The proof is given by a calculation in local coordinates, keeping in mind that 
all of the maps above are globally defined. 

The map B : T*Q + TQ is a bundle map over the identity given in local coordinates 
( 4 ' )  by 4'  = rrJipI. In the coordinates ( 4 ,  q )  on TQ and ( 4 ,  p )  on T*Q we compute: 

so that TB ( 4 ,  p ,  q ,@)  = ( 4 ,  p , ~ " ,  q', I ~ , T ~  + ~ ~ d ' , ~ q ' ) .  
Consider now the map (Y : TT*Q+ 7 T Q ;  in local coordinates ( 4 ,  p ,  q,tj I on 7T*Q, 

a is given by a(q ,  p ,  q, b )  = ( 4 ,  q, e, p ) .  Thus in terms of the induced coordinates 
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( q ,  q, p ,  p )  we have the inverse map a- ' (q ,  q, p ,  p )  = (9, p ,  q, p ) .  Therefore the map 
TB 0 a-' is given by 

TBo a - ' :  (9, 4 , p , f i ) + ( q , p t r " ,  4 , p $ r " + p k r k ' , , q ' ) .  

Finally, applying natural involution, we obtain the map - 0 TB 0 a - '  = TB:  

T B : i q ,  q , P , p ) + ( q ,  4 , f i , . . " P p l ~ " + p , ~ k ' , , q ' ) .  

Thus we have TBidq ' )  = r r J a / a q J ,  and T B ( d q ' )  = # a / a q J  + r y , k q h a / a q J ,  which 
yield the brackets given above in the statement of the theorem. That these brackets 

U obey the Jacobi identity is verified by direct calculation. 

We call this structure the tangent lift to TQ of the Poisson structure on Q. 

4.1. B :  T*Q+ TQ is a Poisson morphism 

Consider again the bundle map B : T*Q + TQ of a Poisson structure on Q. The tangent 
lift is a Poisson structure on TQ, and there is the canonical symplectic structure, and  
hence Poisson structure, on T*Q. 

Corollary. B is a Poisson morphism. 

Proof: We may ask what Poisson structure on TQ would make B into a Poisson 
morphism with the canonical structure on T*Q;  this would be determined by the local 
conditions: { q ' ,  pJ} = S), and  all other brackets zero. In coordinates we have q' = pjrrJ ' ;  
so the brackets are given by 

i d ' ,  4') = { r ' p r ,  XJSP<l 

= r" ,kPr{qh,  ~ " P T )  + { r L r p r ,  qk}r" , l \pr  

= r ' r , k r J 3 p r { q k ,  P S I +  r J ' , k ~ ' ' p s { q r ,  q k )  
- lr J k  - r ,k?T p r  - r J C , k 7 T ' J p s  

= 7 T 0 , k q  

- r J',k rr rhpr - - 

. k  

where we have used the Jacobi identity in the form . i ~ ' ~ , ~ r ~ ~  + rJ',krrh + rrrJ,kr'k = 0, 
and  the skew-symmetry of the matrix of brackets rIJ. Now compute 

( 4 ' 3  4'1 = - {q ' ,  .rrJkPkl 

= - r J k { q 1 ,  Pk1 

= 

The remaining brackets are trivial. Thus we see that B is a Poisson map with the 
tangent structure on TQ. U 

4.2. Further properties of the tangent bracket 

We will now see that the tangent Poisson structure is natural with respect to tangents 
of Poisson maps. 
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Theorem. Let f :  MI + M2 be a Poisson map. Then T f :  TMI  + TM2 is a Poisson map 
for the tangent Poisson structures. 

Proof: Let ( 4 ' )  and (0 ' )  be local charts on MI and M,,  respectively, and  let { q' ,  q '}  M, = 
rrJ and {Q' ,  Q J } M 2 =  4" be the brackets on M ,  and M,, respectively. We will use a 
comma to denote derivatives on MI; otherwise we will write out the derivatives 
explicitly. In addition, I suppress writing composition with f when it is clear from the 
context where functions live. 

Then we have the identities Q=(d f /dq )q ,  Tf(d/dq')  = f ' , I d / d Q ' ,  and {()I, Q'},v,*= 

Thus we have 
(4'9 d } M , .  

5. Momentum maps and the Lie-Poisson bracket 

Suppose that an  action of G on Q admits an  equivariant momentum map J ,  : T*Q + g*;  
equivariance means that J intertwines the lifted action of G on T*Q with the co-adjoint 
action of G on g*, and in particular that J ,  is a Poisson morphism with the symplectic 
structure on T*Q and the Lie-Poisson structure on g*. Taking tangents, we have a 
Poisson map  TJ, : M * Q  + Tg* = g* x g*. 

5.1. The Poisson morphism g*@ g* + g*@ g* 

In the case described above there is also a n  action of GCig on TQ, which may be 
thought of as an  action of TG on TQ, and which is given locally by: 

(g, 5) . ( 4 9 4 )  = ( 4 g ( q ) ,  T4g4-t 5 , ( 4 g ( q ) )  
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where & denotes the action of the element g on Q and tQ denotes the vector field 
on Q generated by the infinitesimal action of G on Q. That this is an action of the 
semidirect product on TQ is verified directly: 

(g ,  ! f ) ( k  T ) ( q ,  4 )  = (g, ! f ) (4h(q)v T 4 h ( 4 ) +  VQ(+h(q)))  

= ( 4 g (  4 h  ( q ) ,  T4gTdh ( 4 )  + T+gVQ( 4 h  ( 4 ) )  + t Q (  4 g (  4 h  ( 4 ) ) ) )  

= ( 4 g h  ( q ) ,  T4gh ( 4 )  + T+gVQ(4g-'( 4 g h  ( ( 4 ) ) )  + t Q ( 4 g h  ( ) ) )  

= (&h(q), T4gh(4)+(Adg V ) Q ( 4 g h ( ( q ) ) ) + S Q ( ~ g h ( q ) ) )  

= ( g h ,  (+Ad,  T ) ( 4 , 4 ) .  

Thus the action is seen to be that of the semidirect product GQc g on TQ. That this 
calculation is independent of choice of charts is also verified directly. Finally we also 
observe that this action carries with it an equivariant momentum map, denoted here 
by J r Q ;  see Abraham and Marsden (1978). Thus we have an equivariant momentum 
map Jro: T*TQ+(g&g)*.  

Theorem. The following is a commuting diagram of Poisson morphisms: 

We will use the notation e'"q) to denote a curve in Q with the property that at 
t = 0 it passes through q with tangent vector 4. Similarly we use e'<Q(q) to denote the 
flow of the vector field tQ generated by !f E g. Then we have the following lemma. 

Lemma. 

Proof: 
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Proo$ If either TJ, or  J T Q  are surjective, then this follows directly since all other maps 
are Poisson maps and  the diagram is commutative. 

Otherwise, we calculate the respective KKS brackets: 

g*:  {p ' ,  p J > =  T i p U k  

Tg*: {ji', j i J }  = rrijik { p ' ,  j i J }  = T i p k  

(g& g ) * :  { p ' ,  p J }  = T i p k  {p1 , / i J }=7T i j ik  

{PI,  F J >  = 0 

{/if, ji'} = 0 

clearly the map (p ,  ji) + (ji, p )  is a Poisson isomorphism. 

5.2. Natural involution 7TQ-  TTQ is a Poisson morphism 

Theorem. If Q is a Poisson manifold, then natural involution - :  7TQ-3 TTQ is a 
Poisson map  for the tangent lift to TTQ of the tangent Poisson structure on  TQ. 

Similarly, if Q has a closed 2-form, then - : TTQ+ TTQ preserves the tangent lift 
to TTQ of the tangent 2-form on TQ. 
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Prooj Let (4 ' )  be a local chart on Q with r' = {q ' ,  q'} the Poisson brackets on Q. 
Then we have an induced chart ( q ' ,  4 ' )  on TQ; let us denote these coordinates by x k  
so that x'  = q' and xn+ '  = q', 1 s i 6 n. With this notation, and 1 s i, j ,  k s n, we have 
the following brackets on TQ: 

* '=0 v " n + J  = T r J  * n + l n + J  - - r ' , k X n + k .  

Equivalently we have the matrix of brackets: 

Finally we have the induced chart ( q ' ,  q', Sq ' ,  S q ' )  on TTQ; let us use y k  for these 
coordinates, so that y k  = x k  if 1 s k s 2n, y2n+k  = S q k ,  and y 3 n + k  = S q k  if 1 6 k 6 n. Then 
for 1 s i, j ,  k s 2n, we have 

A2fltl 2n+J - 2 n t k  A'" = O  A '  2n+J = 9 1 1  -* '" ,ky , 

Equivalently, the matrix of brackets in the coordinates (4, q, Sq, S q )  is 

1 4 4  84 
q o  0 0 T' 

S q  0 0 T " , k S q  

q o  0 T I '  r T T v , k  4 

64 r" T " , k q  . k  T " , k 8 q k  T V , k , , q k 8 q r  + r ' " , k 8 q k  

A =  

e.g. {ad', & I } =  r ' , k 8 q k ,  { S q ' ,  8 q J } =  T T T ? l , k , r q k 8 q r +  r ' , k S q k ,  {q ' ,  adJ}= T", and SO O n .  

We may now easily see that natural involution sends A at (9, q, Sq,  S q )  to A at 
(q ,  Sq ,  q, S q ) .  Therefore natural involution is a Poisson map. 

Now consider the case where Q has a 2-form locally given by R = R, dq'  A dq'. It 
will be convenient to express things in terms of matrices; thus in coordinates R has 
the form R =  (a'). Then in coordinates (q ,  q )  on we have the tangent lift of R to TQ: 

R = (  n!, k q k  "0.. 
Performing a computation analogous to the Poisson case we get the 2-form r on TTQ: 

f l l 1 , k . r  4 kSq + f l , k s q  RIJ,kSq f l U , k q  

0 0  
0 0  

at ( q ,  q, Sq,  S q )  to 
0 

at ( q ,  Sq ,  q, S g ) ,  

0 

V 

Y 0 

as before we see that natural involution sends 
i.e. natural involution preserves the 2-form r. 

6. Tangent Dirac structures 

Recall that a Dirac structure on Q is given by a bundle L . r  TQO T*Q which is 
maximally isotropic under the natural pairing ( , )+ on T Q O  T*Q; in addition, the 
integrability of L is determined by the vanishing of a 3-tensor on the vector bundle L 
given by T,(e,  @ e 2 @  e3)  = ([e,, e,] ,  e3)+ where [ e , ,  e21 = ( [ p e l ,  pe21, pel J @*e2 - 
pe, J d p * e ,  -d(e , ,  e2)- ) ,  p and p* are the natural projections of TQO T*Q onto TQ 
and T*Q, respectively. See Courant (1990). 
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Theorem. (i) If p ( L )  = TQ then n ( x ,  y )  = ( p*exr  y ) ,  where pe, = x and e, E T(L),  is a 
well defined differentiable 2-form on Q. (ii) If p * ( L )  = T*Q, then (nQldfA d g ) =  
(dflpe,), where p*e,  = d g  and  eg E T(L) ,  is a well defined differentiable bi-vector on Q. 

In the first case TL=O is equivalent to d a = O ,  and Q becomes a pre-symplectic 
manifold. In the second TL=O is equivalent to the Jacobi identity for the bracket 
{ f ;  g ) Q  = (.rr,/dfr\ dg), and Q becomes a Poisson manifold. 

Proof: These are basic results about Dirac structures; Courant (1989). 0 

For the sake of a self-contained exposition, we include some more facts about Dirac 
structures. 

Lemma. If a, b : R "  + R" are linear maps that satisfy 
u * b +  b*a = 0 

ker U n ker b = {0} 

then a + b and a - b are invertible. 

Proof: Suppose that ( b  - b ) x  = 0, so that ax = bx. Then by (1) we have: 

( a * b x l x ) + ( b * a x l x )  = 0 for all X E R "  

+( bxl a x )  + (ax1 bx)  = 0 
* ( a x l a x ) + ( b x I b x ) = O  
+ 11 ax / I  + I /  bx 1 1  ' = 0 

so that ax = 0 and bx = 0, i.e. x E ker a n ker b, so x = 0, and U - b is invertible Similarly 
for a + b. 0 
Lemma. A Dirac structure at a point q is determined by a pair of maps a : R" + T,Q, 
b : R" + T:Q such that 

a * b +  b*a = 0 

ker a n ker b = (0). 

the maximallity of the isotropy. 

(3 1 
(4) 

Proof: Condition (3) is the isotropy of the Dirac structure at q, and condition (4) is 
0 

Corollary. A Dirac structure is determined in a neighbourhood U by a local trivializ- 
ation Ll = U x R" and a pair of maps a : U x R" + TLQ, b : U x R" + T*, Q, such that 

a ( q ) : R " +  T,Q and b ( q ) : R " - *  T;Q ( 5 )  

a * b +  b*a = 0 (6) 
ker a n  ker b = (0). ( 7 )  

In coordinates (9') on U we have ae, = a J , d / a q ' ,  be, = b,  dq', where aJ,, b,, E C"( U ) .  
Then the condition TL = 0 is equivalent to 

a rlb,s,rask + a :bk,,,a ', + arab, , ,a;  + a bks + a',axk,rb,, + arka5, ,r  b,, = 0. 
Note that this may be written 

c ( a  'bJS.,a ' l r  a ',a :,rbks) = 0. 
cyclic 
sums 

Proof: The first statements follow from the preceding lemmas. The calculation of the 
0 components of TL is straightforward. 
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Note that a : L + TQ and 6 : L -, T* Q are really globally defined and  are nothing 
more than the maps p and p * .  The components a', and b,, result from choosing a local 
trivialization of L over a chart. This is analogous to having global tensors defined on 
a manifold (e.g. 0 or  v0) and  calculating their components locally. 

Consider the maps a :  U x R" -, TQ and 6 :  U x R" + T*Q. We take their tangents 
to get 

Now TU x TR" = TU x (R" x R"), and we have coordinates ( q ' ,  g J ,  S q ' ,  S q ' )  and 
( q ' , p , ,  q', A )  on TTQ and TT*Q, respectively, induced by the coordinates (9') on U. 
We use e, to denote a vector in R", and e' to denote the coordinate functions on R" 
(these are really the e, with their indices raised by the natural metric on R"). With 
these conventions, we now compute Tu and Tb: 

Tu:  T U X  TR"+ TTQ and 7 3  : TU x TR" + TT*Q. 

so we have 
T a : ( q , e , q , e ) + ( q , a e , q , a e + ( q V ) a e ) .  

T b : ( q , e , q ,  e ) + ( q , b e , g , b e + ( q V ) b e )  
A similar computation shows that 

with values in the bundle TT*Q. 
Finally we apply natural and  canonical involution to 7TQ and TT*Q respectively, 

to get bundle maps over l,, which we write as fa: TU x (R" x R") +*7TQ and ib: TU x 
(R" xR" )+  n * Q ;  locally these maps are given by 

fa1 , q . q )  : ( e ,  e )  + (ae, ae + ( q T ) a e )  

ibl q , q ,  : ( e ,  e )  + (be  + (qV)be ,  be) .  

Theorem. The pair of maps f a  and 7% determine a Dirac structure on  TQ, which we 
call the tangent lift of the Dirac structure on Q determined by a and 6. 

This construction generalizes the tangent lifts of Poisson and pre-symplectic struc- 
tures to the tangent bundle. 

ProoJ: We must verify that fa and 7% satisfy the properties ker f a n  ker h= {O}, and  
(?a)*( 7%) + (7%)*( ?a) = 0, as well as the integrability condition. 

Suppose that ( e ,  e )  E ker f a n  ker ib, so that be = 0, ae = 0 ,  ae+  ( q V ) a e  = 0, and  
be + ( q C ) b e  = 0. The first pair of equations tells us that e = 0, since e E ker a n ker 6, 
and it follows that ae = 0 and be = 0, since e and e are constant. Therefore e = 0, and  
we have ker f a n  ker ib= {O}. 

We now check the skew symmetry of ( f a ) * (  ib); we d o  it component by component, 
keeping in mind that a*b is skew-symmetric, i.e. that ak,bkJ is skew-symmetric with 
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respect to the indices i and j :  

(fi(ei)lfa(ej))= qkbn,k dq'+br,  dqrlakJaqk ") = bk,U 

(fi(eJ)lfa(e,))=(bkj dqk/a'tqrf4'a'z,s- =bk,a I a q r  7 a 
( 

( f i ( e , ) ~ f a ( e , ) ) = ( q ' b k l , r  d q k + b k ,  d q k l a k , ~ + q k u ; , d )  a4 aq' 

= qrbkt,rakj + qrakj,rbkr 

= qr(bkIukJ),r 

(fi(el)lfU(e,))= bk, dqk/U'k--i; = o .  ( a 9  a )  

Thus we see that ( h ) * ( f i )  is skew-symmetric. It remains only to show that the 
integrability condition is satisfied. This we d o  by components after establishing some 
notation. We will indicate the values over which indices are to be summed. Finally we 
will use A', and B, for the components of fa and fi, respectively, and  if an  index 
greater than n appears with a', or  b,], or on q or q, it will be considered modulo n ;  
thus summations involving only a', and b, o r  coordinate functions will be over integers 
1 , 2 , .  . . , n ;  except in these cases, if no mention is made, summation should be over 
all integers 1 , 2 , .  . . , 2 n .  

Reading off the equations for these maps, we see the following relations: 

A', = U ' ,  and B, = qkb,J.k 

Al, = q ' ~ ' , ~  and B, = b,] 

A', = 0 and B,J = b,, 

A', = U',  and B,, = O  

for 1 s i , j s n  

for l s i s n ,  n + l ~ j s 2 n  

for 1 s j s  n, n + 1  6 i ~ 2 n  

for n + l ~ i , j ~ 2 n  
We wish to verify that = 0, where 

T,k = C (ArlBp.rASk + A ' J ; , , B k , )  16 i, j ,  k s 2n.  
C ) C l l C  

sums 

Suppose that 1 S i , j ,  k s  n, then we have 
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We also have 

= 0. 

We also have 

= O  

= o + o + o + o  
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the three remaining terms in our expression are 

= O  

thus we have T u k = O i f  l e i e n  and n + l c j , k c 2 n .  
We now consider the last case, 1 i, j n and n + 1 k s 2n. We have 

Ar!B,7,rASk + A:Bks,rAir +A'kB , , rA ' ,  

a sj 
ab,, ag'bi,,, 

= a rlbJi,ra s k  + q ' a  r i , , { O }  + a ;bk,,rasJ + q'a 7,' ( 0 )  + ark  - q 'a",,, + ark - adr  aq' 

Finally we have the remaining terms 

a q  'asi,' 
bks + a >ask,r b,, + ark - a d r  4 s  

- - a ',a 

- - a',a',.,bks + a;a'k,,b,, + a'ka',,,bJs 

so TJk=O if 1 s i , j < n  and n i l ~ k ~ 2 n .  

tions above show that T vanishes identically. 
Since the integrability tensor T is completely skew-symmetric in i, j ,  k, the calcula- 

That this construction generalizes the tangent lifts of pre-symplectic and Poisson 
0 structures follows immediately from the method of construction. 
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